Polylysine-modified PEG-based hydrogels to enhance the neuro-electrode interface.

نویسندگان

  • Shreyas S Rao
  • Ning Han
  • Jessica O Winter
چکیده

Neural prostheses are a promising technology in the treatment of lost neural function. However, poor biocompatibility of these devices inhibits the formation of a robust neuro-electrode interface. Several factors including mechanical mismatch between the device and tissue, inflammation at the implantation site, and possible electrical damage contribute to this response. Many researchers are investigating polymeric brain mimetic coatings as a means to improve integration with nervous tissue. Specifically, hydrogels, constructs also employed in tissue engineering, have been explored because of their structural and mechanical similarity to native tissue. However, many hydrogel materials (e.g., poly(ethylene glycol) (PEG)) do not support cell adhesion. In this work, we report a technique to enhance the interface between polymeric brain mimetic coatings and neural tissue using adhesion molecules. In particular, polylysine-modified PEG-based hydrogels were synthesized, characterized and shown to promote neural adhesion using a PC12 cell line. In addition, we examined adhesion behavior of a PEG-co-polymer and found that these materials adhere to electrodes for at least 4 weeks. These results suggest that polylysine-PEG hydrogel biomaterials are biocompatible and can enhance stability of chronic neural interfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

متن کامل

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

متن کامل

Selective Electrochemical Nanosensor based on Modified Carbon Paste Electrode for Determination of NADH in the presence of Uric Acid

The electrochemical properties of a modified carbon paste electrode with the synthesized compound of 2,2'-[1,7–heptanediylbis(nitrilomethylidene)]-bis(4-hydroxyphenol) (DHBH) and graphite nanoparticle (GN) were studied by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV) methods. The proposed electrode shows excellent electrocatalytic activity towards the oxida...

متن کامل

The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide.

Microvascularization of tissue engineered constructs was achieved by utilizing a VEGF-mimicking peptide, QK, covalently bound to a poly(ethylene glycol) hydrogel matrix. The 15-amino acid peptide, developed by D'Andrea et al., was modified with a PEG-succinimidyl ester linker on the N-terminus of the peptide, then photocrosslinked onto the surface or throughout PEG hydrogels. PEGylation of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomaterials science. Polymer edition

دوره 22 4-6  شماره 

صفحات  -

تاریخ انتشار 2011